Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Salmonella enterica serovar Typhimurium must adapt to rapid environmental shifts, including those encountered upon entry and during replication to survive within macrophages during pathogenesis. Despite extensive RNA-seq-based investigations, questions remain regarding the range, timing and magnitude of response dynamics. Here we constructed a comprehensive GFP-reporter strain library representing 2,901 computationally identified Salmonella promoter regions to study time-resolved Salmonella transcriptional responses. Promoter activity was measured during in vitro growth and during intracellular infection of RAW 264.7 macrophages. Using bulk measurements and single-cell imaging, we uncovered condition-specific transcriptional regulation and population-level heterogeneity in SPI2-related promoter activity. We also discovered previously unidentified transcriptional activity from 234 promoters. These analyses revealed metabolic shifts including requirements for mntS expression to support manganese homeostasis and expression of Entner–Doudoroff pathway-associated genes to support growth within macrophages. Our library and datasets, made available through the online tool SalComKinetics, provide resources for systems-level interrogation of Salmonella transcriptional dynamics.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Temperature is a key determinant of microbial behaviour and survival in the environment and within hosts. At intermediate temperatures, growth rate varies according to the Arrhenius law of thermodynamics, which describes the effect of temperature on the rate of a chemical reaction. However, the mechanistic basis for this behaviour remains unclear. Here we use single-cell microscopy to show that Escherichia coli exhibits a gradual response to temperature upshifts with a timescale of ~1.5 doublings at the higher temperature. The response was largely independent of initial or final temperature and nutrient source. Proteomic and genomic approaches demonstrated that adaptation to temperature is independent of transcriptional, translational or membrane fluidity changes. Instead, an autocatalytic enzyme network model incorporating temperature-sensitive Michaelis–Menten kinetics recapitulates all temperature-shift dynamics through metabolome rearrangement, resulting in a transient temperature memory. The model successfully predicts alterations in the temperature response across nutrient conditions, diverse E. coli strains from hosts with different body temperatures, soil-dwelling Bacillus subtilis and fission yeast. In sum, our model provides a mechanistic framework for Arrhenius-dependent growth.more » « lessFree, publicly-accessible full text available January 1, 2026
-
The long-term success of introduced populations depends on both their initial size and ability to compete against existing residents, but it remains unclear how these factors collectively shape colonization dynamics. Here, we investigate how initial population (propagule) size shapes the outcome of community coalescence by systematically mixing eight pairs of in vitro microbial communities at ratios that vary over six orders of magnitude, and we compare our results to neutral ecological theory. Although the composition of the resulting cocultures deviated substantially from neutral expectations, each coculture contained species whose relative abundance depended on propagule size even after ~40 generations of growth. Using a consumer–resource model, we show that this dose-dependent colonization can arise when resident and introduced species have high niche overlap and consume shared resources at similar rates. Strain isolates displayed longer-lasting dose dependence when introduced into diverse communities than in pairwise cocultures, consistent with our model’s prediction that propagule size should have larger, more persistent effects in diverse communities. Our model also successfully predicted that species with similar resource-utilization profiles, as inferred from growth in spent media and untargeted metabolomics, would show stronger dose dependence in pairwise coculture. This work demonstrates that transient, dose-dependent colonization dynamics can emerge from resource competition and exert long-term effects on the outcomes of community coalescence.more » « lessFree, publicly-accessible full text available March 18, 2026
-
Bifidobacteria represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest in bifidobacteria as a live biotic therapy, our understanding of colonization, host-microbe interactions, and the health-promoting effects of bifidobacteria is limited. To address these major knowledge gaps, we used a large-scale genetic approach to create a mutant fitness compendium in Bifidobacterium breve. First, we generated a high-density randomly barcoded transposon insertion pool and used it to determine fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. Second, to enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1,462 genes. We leveraged these tools to reveal community- and diet-specific requirements for colonization and to connect the production of immunomodulatory molecules to growth benefits. These resources will catalyze future investigations of this important beneficial microbe.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract Antibiotic treatment significantly impacts the human gut microbiota, but quantitative understanding of how antibiotics affect community diversity is lacking. Here, we build on classical ecological models of resource competition to investigate community responses to species-specific death rates, as induced by antibiotic activity or other growth-inhibiting factors such as bacteriophages. Our analyses highlight the complex dependence of species coexistence that can arise from the interplay of resource competition and antibiotic activity, independent of other biological mechanisms. In particular, we identify resource competition structures that cause richness to depend on the order of sequential application of antibiotics (non-transitivity), and the emergence of synergistic and antagonistic effects under simultaneous application of multiple antibiotics (non-additivity). These complex behaviors can be prevalent, especially when generalist consumers are targeted. Communities can be prone to either synergism or antagonism, but typically not both, and antagonism is more common. Furthermore, we identify a striking overlap in competition structures that lead to non-transitivity during antibiotic sequences and those that lead to non-additivity during antibiotic combination. In sum, our results establish a broadly applicable framework for predicting microbial community dynamics under deleterious perturbations.more » « less
-
Bacteria frequently encounter nutrient fluctuations in natural environments, yet we understand little about their ability to maintain physiological memory of previous food sources. Starvation is a particularly acute case, in which cells must balance adaptation to stresses with limited nutrient supply. Here, we show thatEscherichia colicells immediately accelerate and decelerate in growth upon transitions from spent to fresh media and vice versa, respectively, and memory of rapid growth can be maintained for many hours under constant flow of spent medium. However, after transient exposure of stationary-phase cells to fresh medium, subsequent aerobic incubation in increasingly spent medium led to lysis and limited growth when rejuvenated in fresh medium. Growth defects were avoided by incubation in anaerobic spent medium or water, suggesting that defects were caused by respiration during the process of nutrient depletion in spent medium. These findings highlight the importance of respiration for stationary phase survival and underscore the broad range of starvation outcomes depending on environmental history.more » « less
An official website of the United States government
